
	

14	September	2017	 1	

Representing	File	and	File	System	information	using	CASE/UCO	
	
This	document	describes	the	design	decisions	for	representing	information	that	is	contained	
within	a	file	or	file	system,	and	associated	metadata.		
	
Decision	1:	Designate	the	Trace	object	with	a	general	File	property	bundle	to	specify	details	
of	a	specific	file	itself.	Enrich	the	Trace	with	additional	proper	bundles	that	are	specific	to	the	
file	system	(e.g.,	ExtInode,	MftRecord),	or	that	are	specific	to	the	class	of	file	(e.g.,	Image,	
RasterPicture,	SQLiteBlob,WindowsPEBinaryFile).	
	
Decision	2:	Use	a	Relationship	object	to	represent	where	a	File	is	located	within	another	
trace	such	as	a	Volume,	Partition	or	another	File.	Within	this	Relationship	object,	to	specify	
where	the	File	is	located	within	another	object	such	as	a	Volume,	Partition	or	another	File,	
either	use	the	PathRelation	property	bundle	(logical	location)	or	the	DataRange	property	
bundle	(physical,	bitwise	location).	
	
Decision	3:	By	default,	use	a	ContentData	property	bundle	on	the	“File”	trace	to	specify	
details	(e.g.,	hashes,	size,	magicNumber)	of	the	actual	content	(the	bits)	of	the	file.	
Optionally,	if	the	actual	content	of	the	file	is	relevant	beyond	its	single	instantiation	in	the	
File	(e.g.,	content	as	it	exists	in	memory)	then	the	content	may	be	captured	using	a	
ContentData	property	bundle	on	a	separate	Trace	object	and	related	to	the	“File”	trace	with	
a	“has-content”	Relationship	object.	
	
Overview	Diagram	
The	following	diagram	provides	a	general	overview	of	how	a	File	is	represented	using	CASE,	
and	how	it	can	be	linked	to	an	associated	File	System.		
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	

Figure:	Depiction	of	a	file	trace	(e.g.,	in	an	NTFS	file	system)	represented	using	the	File	
property	bundle	and	a	file	system	specific	property	bundles	with	a	Relationship	mapping	the	

location	of	the	file	within	a	file	system.	
	
Descriptive	JSON-LD	Examples	

File	
	
	
	
	
	
	
	
	
	
	
	

Volume	
	
	
	
	

Property	
bundle	(File	
with	filePath)	

	

Property	
bundle	

(ContentData)
)	

filePath	

Property	
bundle	

	

Relationship	
	
	
	
	

Property	bundle	
(PathRelation)	

	



	

14	September	2017	 2	

The	simplest	case	of	representing	a	single	file	and	its	content.	
	

		{	
						"@id":	"file-38e5cd74-19b2-3f0c-b324-1c4b25a34f12",	
						"@type":	"Trace",	
						"propertyBundle":	[	
								{	
										"@type":	"File",	
										"createdTime":	"2017-09-15T10:12:19.32Z",	
										"extension":	"dd",	
										"fileName":	"IMG-425634.JPG",	
										"fileSystemType":	"NTFS",	
										"filePath":	"C:/SecretStash/IMG-425634.JPG",	
										"isDirectory":	false,	
										"allocationStatus":	"unallocated",	
										"sizeInBytes":	4138616	
								},	
								{	
										"@type":	"ContentData",	
										"hash":	[	
												{	
														"@type":	"Hash",	
														"hashMethod":	"SHA256",	
														"hashValue":	
"ed1b9496953a9e9d2e797fb68fee7150cfb9e6d3ff97c0f64a35068264672918"	
												}	
										],	
										"sizeInBytes":	4138616	
								}	
						]	
		},	

	
	
In	addition	to	representing	files	with	associated	file	system	properties	such	as	filePath,	it	is	
possible	to	represent	properties	of	file	system	itself	such	as	a	Partition	with	a	Volume	
formatted	as	NTFS,	using	a	FileSystem	property	bundle	(the	only	two	properties	currently	
used	for	this	are	fileSystemType	and	clusterSize).	
	

		{	
			"@id":	"partition-27d6ac58-24c1-2a0b-c314-4b4b35a35f25",	
			"@type":	"Trace",	
			"propertyBundle":	[	
				{	
									"@type":	"DiskPartition",	
									"diskPartitionType":	"MSDOS"	
									"partitionID":	"06"	
									"partitionOffset":	"63"	



	

14	September	2017	 3	

									"partitionLength":	"245235063"	
				},	
	 {	
									"@type":	"FileSystem",	
									"diskPartitionType":	"NTFS"	
				},	
				{	
									"@type":	"ContentData",	
									"sizeInBytes":	245235000,	
									"hash":	[	
											{	
													"@type":	"Hash",	
													"hashMethod":	"SHA256",	
													"hashValue":	
"0611ea093d19b1c73a5285ff43741dd77f2a8d983c1c71044eb072e44f5dcb0a"	
											}	
									]	
							}	
					]	
		}	

	
	
A	Relationship	object	is	used	to	represent	where	a	file	is	located	within	another	object.	
	

	{	
			"@id":	"trace-relationship-uuid",	
			"@type":	"Relationship",	
			"source":	"file-38e5cd74-19b2-3f0c-b324-1c4b25a34f12",	
			"target":	"partition-27d6ac58-24c1-2a0b-c314-4b4b35a35f25",	
			"kindOfRelationship":	"contained-within",	
			"isDirectional":	true,	
			"propertyBundle":	[	
						{	
								"@type":	"PathRelation",	
								"path":	"	C:/SecretStash/IMG-425634.JPG"	
						}	
			]	
	},	

	
The	typical	use	case	for	digital	forensic	purposes	is	to	use	a	single	trace	to	represent	both	
the	file	properties	and	file	system	properties.	Alternatively,	if	you	want	to	convey	a	single	file	
existing	in	multiple	filesystems	without	duplicating	intrinsic	file	information	across	multiple	
traces	you	can	do	so	by	specifying	a	trace	for	the	intrinsic	properties	(ContentData),	
specifying	a	trace	for	each	filesystem	instantiation	of	that	file,	and	specifying	“has-content”	
Relationships	between	each	filesystem	instantiation	and	the	intrinsic	file	properties	trace.	
	


